

CUSTOMER :	STD
PRODUCTS :	SHIELDED SMD Power Inductor
PART NO :	MCSHU Series
CUST P/ NO :	
DATE :	2021.11.30
SALES DEP:	
E-MAIL:	
-	

VERSION :	REV.C
CHANGE PROJECT :	-
BEFORE :	-
AFTER :	-
CHANGE DATE :	-
CUSTOMER SIGNATURE :	-

APPROVAL BY :	CHECK BY :	DRAWN BY :
Honey Wei	Leo Wang	May Gao

CHANG	CHANGE HISTORY									
Ver	Revision Items	Before Revision	After Revision	Date						
Rev.C	-	-	-	2021.11.30						
1.00.0				2021.11.00						
			1							

MCSHU Series

- SHIELDED SMD POWER INDUCTOR
- Operating Temperature up tp -40 $^\circ$ ~ 125 $^\circ$
- High Current up to 50 A
- Low DCR down to 0.16mOhms
- · Environmental Lead free
- Environmental RoHS2.0 compliant
- · Environmental halogen free
- Storage Temperature : -40 $^\circ\!\!\!C$ ~ +85 $^\circ\!\!\!C$
- Packaging 13"Reel ,Plastic tape:16.0 ~ 24.0mm wide

FEATURES

- Ferrite based with lower core loss
- · Frerrite High Bs material.
- · Accurate&low DCR design
- · The pad surface design is directly completed by the U Typ Clip.
- · Low thickness by1.5 turn loop design.

Applications

- · Multi-phase and Vcore regulators.
- · Server and desktop VRMs and EVRDs.
- · Data networking and storage systems.
- · Graphics cards and battery power systems.
- · Buck Converter, VRMs.

PRODUCT IDENTIFICATION

MC	<u>SHU</u>	04445	<u>Z</u>	<u>R10</u>	L	<u>R16</u>
1	2	3	(4)	5	6	$\overline{7}$

(1) Brand & Product classification

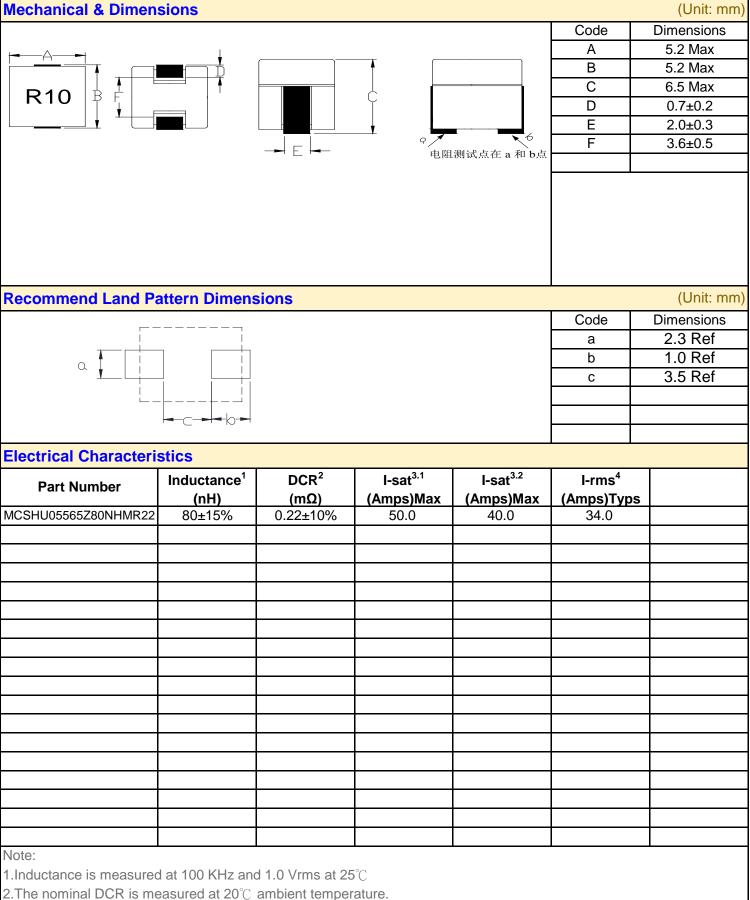
- 2 Product Series NO.(SHU : SMD Power Inductors.)
- ③ External Dimensions.(04445 : L:4.0 × W:4.0 × H:4.5) [mm]
- (4) Separator code.
- (5) Nominal Inductance

Example	Nominal Value
R22	0.22uH
1R0	1.0uH
100	10uH
101	100uH
70NH	70nH

- (6) Inductance Tolerance.(L: ±15%; M: ±20%; N: ±30%)
- (7) Nominal DC Resistance.(R16 : $0.16m\Omega$)

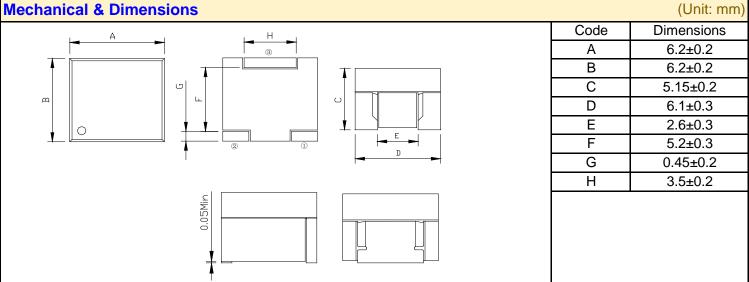
....

Mechanical & Dimen	sions					(Unit: mm)
					Code	Dimensions
	1				A	4.0 Max
			•		В	4.0 Max
R10 B F					С	4.5 Max
R10 B F					D	0.7±0.2
			▁▖		E	1.3±0.3
		→ E	♀ ∕▼ 电阻沥	则试点在 a 和 b点	F	2.6±0.5
Recommend Land Pa	attern Dimens	sions				(Unit: mm)
					Code	Dimensions
					а	1.6 Ref
a					b	1.0 Ref
					С	2.3 Ref
	-- - ₀ -⊳					
					<u> </u>	
Electrical Characteri					I .	
Part Number	Inductance ¹	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-rms ⁴	
MCSHU04445Z55NHMR16	(nH) 55±20%	(mΩ) 0.16±15%	(Amps)Max 31.0	(Amps)Max 25.0	(Amps)Typs 29.0	
MCSHU04445Z65NHMR16	65±20%	0.16±15% 0.16±15%	25.0	25.0	29.0	
MCSHU04445ZR10MR16	100±20%	0.16±15%	16.0	13.0	29.0	
	10012070	0.10±1370	10.0	10.0	23.0	
Note:	I		1		I	<u> </u>
1.Inductance is measured	d at 100 KHz and	d 1 0 \/rms at 25	S°C			
2.The nominal DCR is me						
		annoiont temper				

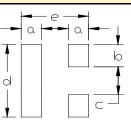

3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25° C

4.The I-rms that will cause temperature rise approximate 40°C without core loss.

Mechanical & Dimensions


3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25°C

3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 100° C


4. The I-rms that will cause temperature rise approximate 40°C without core loss.

Mechanical & Dimensions

Recommend Land Pattern Dimensions

	(Unit: mm)
Code	Dimensions
а	0.8 Ref
b	2.05 Ref
С	2.3 Ref
d	6.4 Ref
е	6.7 Ref

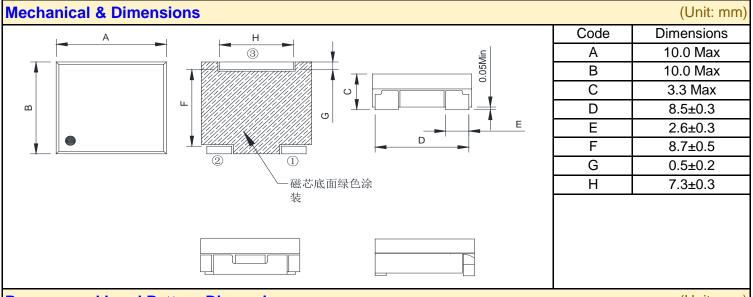
Electrical Characteristics

Part Number	Inductance ¹	DCR ²	I-sat ^{3.1}	I-sat ^{3.2}	I-rms⁴
	(nH)	(mΩ)	(Amps)Max	(Amps)Max	(Amps)Typs
MCSHU65ZR20LR40Z2T	200±15%	0.40±0.05	25.0	23,≧140nH	23.0

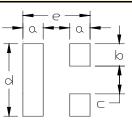
Note:

1.Inductance is measured at 100 KHz and 1.0 Vrms at 25°C, test point is Pin1-2.

2.The nominal DCR is measured at 20°C ambient temperature ,test point is Pin1-2.


3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25°C, test point is Pin1-2.

3.2The I-sat that will cause rolloff nominal inductance value at 100°C ,test point is Pin1-2.


4. The I-rms that will cause temperature rise approximate 40°C without core loss ,test point is Pin1-2.

Recommend Land Pattern Dimensions

	(Unit: mm)
Code	Dimensions
а	1.25 Ref
b	3.2 Ref
С	2.6 Ref
d	7.8 Ref
е	10.5 Ref

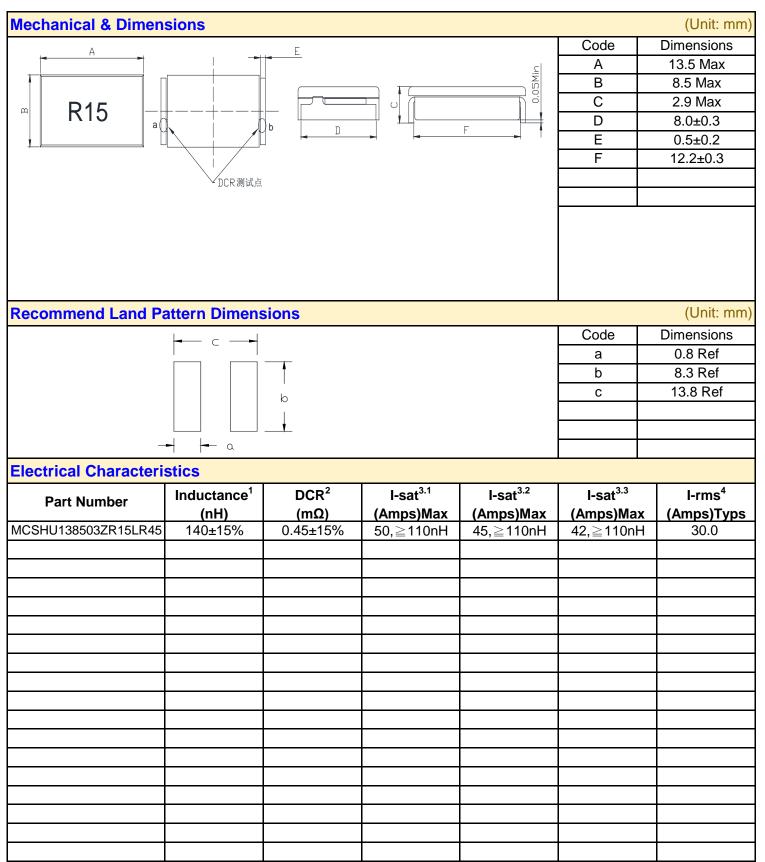
Electrical Characteristics

Part Number	Inductance ¹ (nH)	DCR ² (mΩ)	l-sat ^{3.1} (Amps)Max	l-sat ^{3.2} (Amps)Max	l-rms⁴ (Amps)Typs
ACSHU101033ZR22LR45Z2T		0.45±15%	36.0	28.0	30.0

Note:

1.Inductance is measured at 100 KHz and 1.0 Vrms at 25°C, test point is Pin1-2.

2.The nominal DCR is measured at 20°C ambient temperature ,test point is Pin1-2.


3.1The I-sat that will cause initial inductance value approximately 20% rolloff at 25° C ,test point is Pin1-2.

3.2The I-sat that will cause initial inductance value approximately 20% rolloff at 100℃, test point is Pin1-2.

4. The I-rms that will cause temperature rise approximate 40°C without core loss ,test point is Pin1-2.

Note:

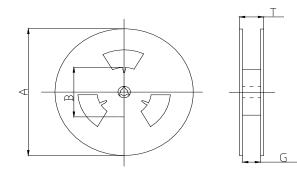
1.Inductance is measured at 100 KHz and 1.0 Vrms at 25° C.

2.The nominal DCR is measured at 20 $^\circ\!\mathrm{C}$ ambient temperature.

3.1The I-sat that will cause rolloff nominal inductance value at 25° C.

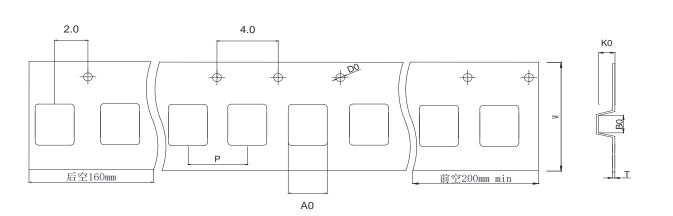
3.2The I-sat that will cause rolloff nominal inductance value at 85° C.

3.3The I-sat that will cause rolloff nominal inductance value at 115° C.


4. The I-rms that will cause temperature rise approximate 40°C without core loss.

Packaging

Reel Dimension:


P/N	Туре	A(mm)	B(mm)	G(mm)	T(mm)	Chip/Reel
MCSHU04445	13" x 16mm	330	100	16.5	20.7	1,500
MCSHU05565	13" x 16mm	330	100	16.5	20.7	750
MCSHU65-2T	13" x 16mm	330	100	16.5	20.7	800
MCSHU101033-2T	13" x 24mm	330	100	24.5	28.7	1,200
MCSHU138503	13" x 24mm	330	100	24.5	28.7	1,200

Packaging

Tape Dimension:

P/N	Ao	Во	Ko	Р	W			
MCSHU04445	4.2±0.1	4.6±0.1	4.7±0.1	8.0±0.1	16.0±0.3			
MCSHU05565	5.4±0.1	5.6±0.1	6.7±0.1	12.0±0.1	16.0±0.3			
MCSHU65-2T	6.8±0.1	6.8±0.1	5.7±0.1	12.0±0.1	16.0±0.3			
MCSHU101033-2T	10.4±0.1	10.4±0.1	3.5±0.1	16.0±0.1	24.0±0.3			
MCSHU138503	13.6±0.1	8.7±0.1	3.3±0.1	16.0±0.1	24.0±0.3			
]

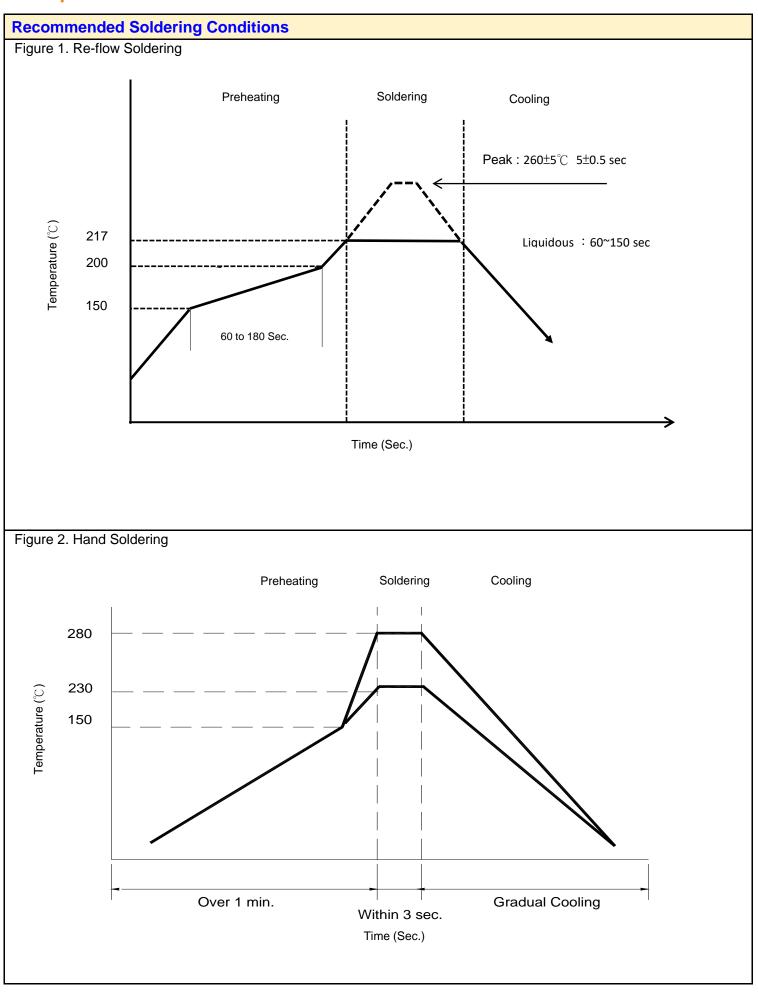
Packaging

Tearing Off Force:

	F 405% to 400%		The force tearing off cobe tape is 10 to 130 g.f					
Top cover tape	165° to 180°		in the arrow direction under the following conditions					
			Room Temp	Room Humidity	Room atrn	Teaming Speed		
			(°C)	(%)	(hPa)	(mm/min)		
		Base tape	5~35	45~85	860~1060	300		

%Storage Conditions

- 1. Temperature and humidity conditions: -40°C ~ +85°C and 70% RH.
- 2. Recommended products should be used within 6 months form the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.


☆Transportation

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.

MORE

Reliability and Testing Conditions							
Item	Specification	Conditions					
Operating temperature range	-40°C ~ +125°C (Including self-temperature rise)						
Storage temperature and humidity range	-40°C ~ +85°C , 70% RH Max						
Solderability	More than 90% of the terminal electrode should be covered with solder.	 Preheat: 150 °C, 60 sec Solder: Sn96.5%-Ag3%-Cu0.5% Temperature: 245±5°C Flux for lead free: Rosin 9.5% Dip time: 4±1 sec Depth: completely cover the termination 					
Resistance to Soldering Heat	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	 Solder technique simulation: SMD Temperature (°C): 260 ± 5 (solder temp) Time (s): 10 ± 1 Temperature ramp / immersion and emersion rate: 25 mm/s ± 6 mm/s Number of heat cycles: 1 					
Resistance to High Temperature	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	500 hrs. at 125°C±5°C Unpowered. Measurement at 24±4 hours after test conclusion.					
Resistance to Low Temperature	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	500 hrs. at -40°C±5°C. Unpowered. Measurement at 24±4 hours after test conclusion.					
Resistance to Humidity	Inductance within ±20% of initial value. No disconnection or short circuit. The appearance shall not break.	After 500 hours in 40±2 $^\circ\!C$ and 90 to 95% humidity , and 2 hour drying under normal condition.					
		After 100 cycles of following condition.					
		Step Temperature (°C) Times (min.)					
Thermal shock	Inductance within ±20% of initial value. No disconnection or short circuit.	1 -40±5℃ 30					
	The appearance shall not break.	2 Room Temperature Within 3					
		3 125±5℃ 30					
		4 Room Temperature Within 3					
Vibration Test	Inductance within ±10% of initial value and appearance shall not break.	After vibration for 1hour, In each of three orientations at sweep vibration (10~55~10Hz) with 1.52mm P-P Amplitudes.					
Terminal strength	The terminal electrode and the ferrite must not be damaged	Solder a chip to test substrate, and then laterally apply a load 10N in the arrow direction, Duration :5s					
Drop Test	Inductance within ±20% of initial value. The appearance shall not break.	Drop 3 times on a concrete floor from a height of 75cm by inimum packing					

